3.1.59 \(\int \frac {\sqrt {\pi +c^2 \pi x^2} (a+b \text {arcsinh}(c x))}{x} \, dx\) [59]

3.1.59.1 Optimal result
3.1.59.2 Mathematica [A] (verified)
3.1.59.3 Rubi [C] (verified)
3.1.59.4 Maple [A] (verified)
3.1.59.5 Fricas [F]
3.1.59.6 Sympy [F]
3.1.59.7 Maxima [F]
3.1.59.8 Giac [F(-2)]
3.1.59.9 Mupad [F(-1)]

3.1.59.1 Optimal result

Integrand size = 26, antiderivative size = 89 \[ \int \frac {\sqrt {\pi +c^2 \pi x^2} (a+b \text {arcsinh}(c x))}{x} \, dx=-b c \sqrt {\pi } x+\sqrt {\pi +c^2 \pi x^2} (a+b \text {arcsinh}(c x))-2 \sqrt {\pi } (a+b \text {arcsinh}(c x)) \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right )-b \sqrt {\pi } \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c x)}\right )+b \sqrt {\pi } \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c x)}\right ) \]

output
-b*c*x*Pi^(1/2)-2*(a+b*arcsinh(c*x))*arctanh(c*x+(c^2*x^2+1)^(1/2))*Pi^(1/ 
2)-b*polylog(2,-c*x-(c^2*x^2+1)^(1/2))*Pi^(1/2)+b*polylog(2,c*x+(c^2*x^2+1 
)^(1/2))*Pi^(1/2)+(a+b*arcsinh(c*x))*(Pi*c^2*x^2+Pi)^(1/2)
 
3.1.59.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.47 \[ \int \frac {\sqrt {\pi +c^2 \pi x^2} (a+b \text {arcsinh}(c x))}{x} \, dx=\sqrt {\pi } \left (a \sqrt {1+c^2 x^2}+a \log (x)-a \log \left (\pi \left (1+\sqrt {1+c^2 x^2}\right )\right )+b \left (-c x+\sqrt {1+c^2 x^2} \text {arcsinh}(c x)+\text {arcsinh}(c x) \log \left (1-e^{-\text {arcsinh}(c x)}\right )-\text {arcsinh}(c x) \log \left (1+e^{-\text {arcsinh}(c x)}\right )+\operatorname {PolyLog}\left (2,-e^{-\text {arcsinh}(c x)}\right )-\operatorname {PolyLog}\left (2,e^{-\text {arcsinh}(c x)}\right )\right )\right ) \]

input
Integrate[(Sqrt[Pi + c^2*Pi*x^2]*(a + b*ArcSinh[c*x]))/x,x]
 
output
Sqrt[Pi]*(a*Sqrt[1 + c^2*x^2] + a*Log[x] - a*Log[Pi*(1 + Sqrt[1 + c^2*x^2] 
)] + b*(-(c*x) + Sqrt[1 + c^2*x^2]*ArcSinh[c*x] + ArcSinh[c*x]*Log[1 - E^( 
-ArcSinh[c*x])] - ArcSinh[c*x]*Log[1 + E^(-ArcSinh[c*x])] + PolyLog[2, -E^ 
(-ArcSinh[c*x])] - PolyLog[2, E^(-ArcSinh[c*x])]))
 
3.1.59.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.57 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.02, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {6221, 24, 6231, 3042, 26, 4670, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\pi c^2 x^2+\pi } (a+b \text {arcsinh}(c x))}{x} \, dx\)

\(\Big \downarrow \) 6221

\(\displaystyle \sqrt {\pi } \int \frac {a+b \text {arcsinh}(c x)}{x \sqrt {c^2 x^2+1}}dx-\sqrt {\pi } b c \int 1dx+\sqrt {\pi c^2 x^2+\pi } (a+b \text {arcsinh}(c x))\)

\(\Big \downarrow \) 24

\(\displaystyle \sqrt {\pi } \int \frac {a+b \text {arcsinh}(c x)}{x \sqrt {c^2 x^2+1}}dx+\sqrt {\pi c^2 x^2+\pi } (a+b \text {arcsinh}(c x))+\sqrt {\pi } (-b) c x\)

\(\Big \downarrow \) 6231

\(\displaystyle \sqrt {\pi } \int \frac {a+b \text {arcsinh}(c x)}{c x}d\text {arcsinh}(c x)+\sqrt {\pi c^2 x^2+\pi } (a+b \text {arcsinh}(c x))+\sqrt {\pi } (-b) c x\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\pi } \int i (a+b \text {arcsinh}(c x)) \csc (i \text {arcsinh}(c x))d\text {arcsinh}(c x)+\sqrt {\pi c^2 x^2+\pi } (a+b \text {arcsinh}(c x))+\sqrt {\pi } (-b) c x\)

\(\Big \downarrow \) 26

\(\displaystyle i \sqrt {\pi } \int (a+b \text {arcsinh}(c x)) \csc (i \text {arcsinh}(c x))d\text {arcsinh}(c x)+\sqrt {\pi c^2 x^2+\pi } (a+b \text {arcsinh}(c x))+\sqrt {\pi } (-b) c x\)

\(\Big \downarrow \) 4670

\(\displaystyle i \sqrt {\pi } \left (i b \int \log \left (1-e^{\text {arcsinh}(c x)}\right )d\text {arcsinh}(c x)-i b \int \log \left (1+e^{\text {arcsinh}(c x)}\right )d\text {arcsinh}(c x)+2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))\right )+\sqrt {\pi c^2 x^2+\pi } (a+b \text {arcsinh}(c x))+\sqrt {\pi } (-b) c x\)

\(\Big \downarrow \) 2715

\(\displaystyle i \sqrt {\pi } \left (i b \int e^{-\text {arcsinh}(c x)} \log \left (1-e^{\text {arcsinh}(c x)}\right )de^{\text {arcsinh}(c x)}-i b \int e^{-\text {arcsinh}(c x)} \log \left (1+e^{\text {arcsinh}(c x)}\right )de^{\text {arcsinh}(c x)}+2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))\right )+\sqrt {\pi c^2 x^2+\pi } (a+b \text {arcsinh}(c x))+\sqrt {\pi } (-b) c x\)

\(\Big \downarrow \) 2838

\(\displaystyle i \sqrt {\pi } \left (2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))+i b \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c x)}\right )-i b \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c x)}\right )\right )+\sqrt {\pi c^2 x^2+\pi } (a+b \text {arcsinh}(c x))+\sqrt {\pi } (-b) c x\)

input
Int[(Sqrt[Pi + c^2*Pi*x^2]*(a + b*ArcSinh[c*x]))/x,x]
 
output
-(b*c*Sqrt[Pi]*x) + Sqrt[Pi + c^2*Pi*x^2]*(a + b*ArcSinh[c*x]) + I*Sqrt[Pi 
]*((2*I)*(a + b*ArcSinh[c*x])*ArcTanh[E^ArcSinh[c*x]] + I*b*PolyLog[2, -E^ 
ArcSinh[c*x]] - I*b*PolyLog[2, E^ArcSinh[c*x]])
 

3.1.59.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4670
Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x 
_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^((-I)*e + f*fz*x)]/(f*fz*I)), x] 
 + (-Simp[d*(m/(f*fz*I))   Int[(c + d*x)^(m - 1)*Log[1 - E^((-I)*e + f*fz*x 
)], x], x] + Simp[d*(m/(f*fz*I))   Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e 
+ f*fz*x)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]
 

rule 6221
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + 
 (e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*Arc 
Sinh[c*x])^n/(f*(m + 2))), x] + (Simp[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/Sqrt 
[1 + c^2*x^2]]   Int[(f*x)^m*((a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2]), x] 
, x] - Simp[b*c*(n/(f*(m + 2)))*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]   I 
nt[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d 
, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])
 

rule 6231
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.) 
*(x_)^2], x_Symbol] :> Simp[(1/c^(m + 1))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e 
*x^2]]   Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; FreeQ 
[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && IntegerQ[m]
 
3.1.59.4 Maple [A] (verified)

Time = 0.23 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.92

method result size
default \(a \left (\sqrt {\pi \,c^{2} x^{2}+\pi }-\sqrt {\pi }\, \operatorname {arctanh}\left (\frac {\sqrt {\pi }}{\sqrt {\pi \,c^{2} x^{2}+\pi }}\right )\right )+\sqrt {c^{2} x^{2}+1}\, \operatorname {arcsinh}\left (c x \right ) \sqrt {\pi }\, b +\operatorname {arcsinh}\left (c x \right ) \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right ) \sqrt {\pi }\, b -\operatorname {arcsinh}\left (c x \right ) \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right ) \sqrt {\pi }\, b -b c x \sqrt {\pi }+b \operatorname {polylog}\left (2, c x +\sqrt {c^{2} x^{2}+1}\right ) \sqrt {\pi }-b \operatorname {polylog}\left (2, -c x -\sqrt {c^{2} x^{2}+1}\right ) \sqrt {\pi }\) \(171\)
parts \(a \left (\sqrt {\pi \,c^{2} x^{2}+\pi }-\sqrt {\pi }\, \operatorname {arctanh}\left (\frac {\sqrt {\pi }}{\sqrt {\pi \,c^{2} x^{2}+\pi }}\right )\right )+\sqrt {c^{2} x^{2}+1}\, \operatorname {arcsinh}\left (c x \right ) \sqrt {\pi }\, b +\operatorname {arcsinh}\left (c x \right ) \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right ) \sqrt {\pi }\, b -\operatorname {arcsinh}\left (c x \right ) \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right ) \sqrt {\pi }\, b -b c x \sqrt {\pi }+b \operatorname {polylog}\left (2, c x +\sqrt {c^{2} x^{2}+1}\right ) \sqrt {\pi }-b \operatorname {polylog}\left (2, -c x -\sqrt {c^{2} x^{2}+1}\right ) \sqrt {\pi }\) \(171\)

input
int((a+b*arcsinh(c*x))*(Pi*c^2*x^2+Pi)^(1/2)/x,x,method=_RETURNVERBOSE)
 
output
a*((Pi*c^2*x^2+Pi)^(1/2)-Pi^(1/2)*arctanh(Pi^(1/2)/(Pi*c^2*x^2+Pi)^(1/2))) 
+(c^2*x^2+1)^(1/2)*arcsinh(c*x)*Pi^(1/2)*b+arcsinh(c*x)*ln(1-c*x-(c^2*x^2+ 
1)^(1/2))*Pi^(1/2)*b-arcsinh(c*x)*ln(1+c*x+(c^2*x^2+1)^(1/2))*Pi^(1/2)*b-b 
*c*x*Pi^(1/2)+b*polylog(2,c*x+(c^2*x^2+1)^(1/2))*Pi^(1/2)-b*polylog(2,-c*x 
-(c^2*x^2+1)^(1/2))*Pi^(1/2)
 
3.1.59.5 Fricas [F]

\[ \int \frac {\sqrt {\pi +c^2 \pi x^2} (a+b \text {arcsinh}(c x))}{x} \, dx=\int { \frac {\sqrt {\pi + \pi c^{2} x^{2}} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}}{x} \,d x } \]

input
integrate((a+b*arcsinh(c*x))*(pi*c^2*x^2+pi)^(1/2)/x,x, algorithm="fricas" 
)
 
output
integral(sqrt(pi + pi*c^2*x^2)*(b*arcsinh(c*x) + a)/x, x)
 
3.1.59.6 Sympy [F]

\[ \int \frac {\sqrt {\pi +c^2 \pi x^2} (a+b \text {arcsinh}(c x))}{x} \, dx=\sqrt {\pi } \left (\int \frac {a \sqrt {c^{2} x^{2} + 1}}{x}\, dx + \int \frac {b \sqrt {c^{2} x^{2} + 1} \operatorname {asinh}{\left (c x \right )}}{x}\, dx\right ) \]

input
integrate((a+b*asinh(c*x))*(pi*c**2*x**2+pi)**(1/2)/x,x)
 
output
sqrt(pi)*(Integral(a*sqrt(c**2*x**2 + 1)/x, x) + Integral(b*sqrt(c**2*x**2 
 + 1)*asinh(c*x)/x, x))
 
3.1.59.7 Maxima [F]

\[ \int \frac {\sqrt {\pi +c^2 \pi x^2} (a+b \text {arcsinh}(c x))}{x} \, dx=\int { \frac {\sqrt {\pi + \pi c^{2} x^{2}} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}}{x} \,d x } \]

input
integrate((a+b*arcsinh(c*x))*(pi*c^2*x^2+pi)^(1/2)/x,x, algorithm="maxima" 
)
 
output
-(sqrt(pi)*arcsinh(1/(c*abs(x))) - sqrt(pi + pi*c^2*x^2))*a + b*integrate( 
sqrt(pi + pi*c^2*x^2)*log(c*x + sqrt(c^2*x^2 + 1))/x, x)
 
3.1.59.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {\pi +c^2 \pi x^2} (a+b \text {arcsinh}(c x))}{x} \, dx=\text {Exception raised: TypeError} \]

input
integrate((a+b*arcsinh(c*x))*(pi*c^2*x^2+pi)^(1/2)/x,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.1.59.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\pi +c^2 \pi x^2} (a+b \text {arcsinh}(c x))}{x} \, dx=\int \frac {\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,\sqrt {\Pi \,c^2\,x^2+\Pi }}{x} \,d x \]

input
int(((a + b*asinh(c*x))*(Pi + Pi*c^2*x^2)^(1/2))/x,x)
 
output
int(((a + b*asinh(c*x))*(Pi + Pi*c^2*x^2)^(1/2))/x, x)